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Abstract

effects of a nature that are yet to be determined.

healing potential.

Background: The promotion of the healing process following musculoskeletal injuries comprises growth factor
signalling, migration, proliferation and apoptosis of cells. If these processes could be modulated, the healing of
tendon tissue may be markedly enhanced. Here, we report the use of the Somagen™ device, which is certified
for medical use according to European laws. It generates low-frequency pulsed electromagnetic fields that trigger

Methods: A 1.5-cm wide, linear scrape was introduced into patellar tendon fibroblast cultures (N =5 donors).
Treatment was carried out every second day. The regimen was applied three times in total with 30 minutes
comprising pulsed electromagnetic field packages with two fundamental frequencies (10 minutes of 33 Hz,
20 minutes of 7.8 Hz). Control cells remained untreated. All samples were analyzed for gap closure time,
proliferation and apoptosis one week after induction of the scrape wound.

Results: The mean time for bridging the gap in the nontreated cells was 5.05 + 0.33 days, and in treated cells,
it took 3.35 +0.38 days (P <0.001). For cell cultures with scrape wounds, a mean value for BrdU incorporation of
OD =0.70+0.16 was found. Whereas low-frequency pulsed electromagnetic fields treated samples showed
OD=1.58+0.24 (P <0.001). However, the percentage of apoptotic cells did not differ between the two groups.

Conclusions: Our data demonstrate that low-frequency pulsed electromagnetic fields emitted by the Somagen™
device influences the in vitro wound healing of patellar tendon fibroblasts and, therefore, possibly increases wound

Keywords: wound healing, proliferation, apoptosis, low-frequency pulsed electromagnetic fields

Background

One of the most important advances in promotion of
the healing process following musculoskeletal injuries
has evolved from the insight that treatment of these in-
juries with prolonged immobilization may delay recovery
and adversely affect normal tissues. Conversely, con-
trolled early resumption of activity can promote restor-
ation of function. Experimental studies in the several
past decades confirm and help explain the deleterious ef-
fects of prolonged immobilization and the beneficial ef-
fects of activity on the musculoskeletal tissues [1,2]. At
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the beginning of the healing process, controlled motion
and loading of tendon and ligament repair tissue help
align the regeneration of cells and collagen fibers, stimu-
late collagen synthesis and increase strength [3-6]. Early
or excessive strain, however, can increase the inflamma-
tory reaction and may damage repair tissue, leading to
failure of the healing process [7].

However, not only mechanical loading or growth fac-
tor signalling is important for healing processes. DNA
activity concerning transcription and translation, as well
as cell cycle mechanisms, plays a pivotal role. Those ac-
tivities comprise proliferation, migration and apoptosis
of cells. If these processes could be modulated, the heal-
ing of tendon tissue may be enhanced markedly. This
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modulation could prevent the occurrence of excessive
strain by accelerating tendon healing.

In order to study such processes in vitro, wound-healing
assays have been carried out in tissue cultures for many
years. These assays monitored cell behavior, including
appraising the migration and proliferative capacities of dif-
ferent cells under various culture conditions. They gener-
ally involve growing cells to a confluent monolayer as a
first step. The layer is ‘wounded’ by a scraping device
(razor-blade, pipette tip, needle or cell-scraper). This pen-
ning in the cell layer gets repopulated because the cells on
the wound edge are no longer contact-inhibited. At the
cellular level, healing involves the cells’ detachment from
and attachment to the matrix adjacent to the wound area,
migration, and proliferation. This repopulation is micro-
scopically observed over a time course to assess the gap
closure time, the occupied area over time, or the rate of
migration [8-10]. Moreover, proliferation and apoptosis
are investigated regularly. Depending on the cell type, the
growth factors present, and the extent of the wounded re-
gion, wound repair ranges from several hours to days.

Until the 1980s it was believed that biological informa-
tion within cell systems was being transferred not only
chemically but also physically via electromagnetic waves.
Information of this nature activates or inhibits biochem-
ical processes [11,12].

Led by these findings in the early 1990s, Sachtleben
GmbH, Hamburg, Germany developed the Somagen™
device, which supposedly stimulates the communication
mechanisms of cells (Figure 1). The low-frequency pulsed
electromagnetic fields (PEMF) electromagnetic signals
have been described as affecting enzymes, cells, tissues
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and whole organisms. Even though the effects exerted by
PEMEF could be measured, the reasons for the reactions of
the biological systems remain unidentified. However,
several theories exist to explain these effects, for ex-
ample the Larmor precession [13,14], the hypothesis of
Gartzke and Lange [15] or radical pair mechanism
[16-18] (for review see [19]). The application of the PEMF
induces changes in cellular processes, among others, differ-
entiation [20], apoptosis [21], DNA synthesis [22], protein
expression [23], protein phosphorylation [24], anti-
inflammatory effects [25] and hormone production [26].

PEMF instruments like the Somagen™ device generate
low-frequency electromagnetic signals in order to acceler-
ate, among others, wound healing response. This en-
hances the regeneration potential of the destroyed tissue,
especially the stimulation of new formation of connective
tissue, something for which the vasodilatation and in-
creased cell division are likely responsible [27]. Further-
more, growth factor signalling, which is important for
healing processes, can be influenced by low-frequency
electromagnetic signals. Zhao et al. could demonstrate a
stimulation of the VEGF receptor signaling pathway by
applying an electric field on vascular endothelial cells [28].
Another study demonstrated an increased type I collagen
expression in fibroblasts after exposure to pulsing electric
fields [29]. Zhao et al. summarized that electric fields
polarize the activation of multiple signalling pathways, in-
cluding the PI3 kinases/Pten, membrane growth factor re-
ceptors and integrins, both key players in the wound
healing processes [30].

However, the effect of low-frequency PEMF emitted
by the Somagen™ device on fibroblasts as key players in
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Figure 1 The low-frequency pulsed electromagnetic fields (PEMF) emitting Somagen™ device. In this work, a specific ‘wound healing’
program lasting 30 minutes was used. The applied program consisted of two PEMF signal packages of 10 minutes at a fundamental frequency of
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wound healing remains to be investigated. Therefore,
this study focuses on the effects of PEMF on the healing
process of tendon fibroblasts in an in vitro wound heal-
ing model. Our findings may be helpful in the field of
ligament tissue engineering and may support the devel-
opment of new strategies for ligament repair.

Methods

Cell culture

Fibroblasts were isolated from five patients undergoing
surgical treatment of the knee joint. The study protocol
is in accordance with the standards of the Declaration of
Helsinki. Following approval by the ethical committee of
Hannover Medical School, written informed consent
was obtained from the patients. The specimens of ap-
proximately 4 x2 mm were aseptically collected from
the patellar tendon. The obtained patellar tendon speci-
men was divided into 0.5 mm? pieces and transferred
into petri dishes with a roughened bottom. Dulbecco’s
Modified Eagle’s Medium (DMEM) was used as culture
medium containing 10% fetal calf serum, 1% gentamicin
and 1% amphotericin B (Biochrom, Berlin, Germany).
Tissue specimens were cultured in a humidified environ-
ment with 5% CO, at 37°C. Medium was replenished
every second day. After six to eight days, fibroblasts
started to grow out of the patellar tendon specimens.
After another three to four weeks, the cells reached 80
to 90% confluence. The cells were trypsinized and sub-
cultured in 75 cm? flasks (13 x 10% cells/cm?). Concomi-
tantly, they were counted and an overall viability of
more than 90% was observed using the trypan blue ex-
clusion test. This procedure was repeated once. Cells in
the second passage were harvested and 1.5 x 10 fibro-
blasts were transferred into six-well tissue culture plates
(Corning, Vienna, Austria).

Induction of the scrape wound

Scrape wounds were performed in confluent monolayer
cultures of the patellar tendon fibroblasts. A 1.5 cm
wide, linear scrape was introduced with a cell scraper
over the entire diameter of the well. The wound area
was marked with three black ink dots on each side of
the wound for reference. Cultures were rinsed with cul-
ture medium to remove floating cellular debris, and
fresh culture medium was added.

Low-frequency pulsed electromagnetic fields treatment
protocol

Cell cultures were treated every second day, three times
in total, with a registered and certified Somagen™ device,
according to company’s protocol (Sachtleben GmbH,
Hamburg) In this work, a specific “wound healing” pro-
gram was used. The applied program consisted of two
PEMF signal packages of 10 minutes at a fundamental
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frequency of 33 Hz and 20 minutes at 7.8 Hz. This
‘wound healing’ program was developed by Sachtleben
GmbH in cooperation with different dermatology clinics
and has been successfully used before in a clinical setting
[31]. The signals have the shape of spike pulses with
varying send/pause intervals. Thereby, a magnetic flux
density of 0.25 pT up to 3.16 uT emerged. At a 5-mm
distance from the applicator, electric field strength up to
6.3 mV/cm was measurable (Additional file 1). Applica-
tors attached to the Somagen™ device were placed in the
incubator. The six-well tissue culture dishes were put
directly on top of the applicators, thereby having a dis-
tance to the fibroblast monolayer of approximately 1 to
2 mm. Control cells were also put on the applicator
without starting the program and were cultivated in a
separate incubator to avoid interactions between the
stimulated and nonstimulated cells.

In order to measure any deviation between the treated
versus the control cell cultures, time to closure of the
gap, proliferation and apoptosis were determined.

Time to closure

The wound was microscopically examined daily for re-
population of the wound area (Figure 2A). The end
point of observation was the complete bridging of the
scrape wound. Therefore, before the scratch was initi-
ated, a photograph as control with a 20x magnification
was captured with the microscope (Zeiss). Afterwards, a
photograph with the same magnification was made every
day. For quantification, the free area was highlighted,
calculated and compared to the control with the software
Image] 1.42q (National Institute of Health, Maryland,
USA). Three independent calculations of each donor were
made.

Proliferation

The analysis of cell proliferation was performed one
week after induction of the scrape wound using a stand-
ard BrdU kit for spectrophotometry (Roche, Mannheim,
Germany). BrdU is a thymidine analog that is incorpo-
rated into the DNA during the synthesis phase (S1) of
the cell cycle. At 0, 6 and 12 hours after application of
BrdU, the amount of inserted BrdU was analyzed ac-
cording to a modified protocol for the larger dishes. To
remove non-incorporated BrdU, cells were washed twice
with DMEM. Washed cells were fixed with 70% ethanol
in 0.5 M HCI at -20°C for 30 min and washed three
more times with DMEM. Nucleases were added to the
cells at 37°C for 30 min to increase the accessibility of
the incorporated BrdU for detection by anti-BrdU Fab-
fragment. This incubation was performed in a buffer
containing 66 mM Tris, 0.66 mM MgCl,, and 1 mM 2-
mercaptoethanol to permeate the cells and disintegrate
disulphide bonds. After washing the cells three times
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Figure 2 The use of low-frequency pulsed electromagnetic
fields (PEMF) lead to a significantly lower time to closure.
Scrape wound of patellar tendon fibroblasts caused by a cell scraper
(A), magnification 60x. For the analysis of the time to closure, one
part of the cells was treated with the Somagen™ device applying
the ‘wound healing’ program (B). Nontreated cells were cultured
under the same conditions without treatment with the Somagen™
device. Mean % SD, ***P <0.001, (N =5, n=2) are indicated.

with DMEM, a mouse monoclonal Fab-fragment against
BrdU conjugated with horse-radish peroxidase was added
to the cells together with 10 mg/ml BSA in phosphate-
buffered saline. The cells were incubated at 37°C for
30 min and subsequently washed three times with
DMEM. The bound conjugate was visualized using
1 mg/ml of the soluble chromogenic substrate 2,2'-Aci-
nobis [3-ethylbenzthiazoline-sulfonic acid] (ABTS). The
signal was increased by adding 1 mg/ml of ABTS-
substrate enhancer. The optical density of each sample
was measured at 405 nm and 490 nm.

Apoptosis rate

Analysis of apoptosis was performed one week after in-
duction of the scrape wound according to the protocol
provided by the manufacturer (Bender Med systems,
Vienna, Austria). Briefly, adherent cells were detached
from the cell culture dishes by carefully scratching with
a cell scraper. The cells were centrifuged at 1500 x g and
4°C; afterwards, the pellet was carefully resuspended in
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100 pl binding buffer (10 mM HEPES, pH 7.4; 140 mM
NaCl; 5 mM CaCl,) and stained with 6 pl recombinant
human annexin-V-FITC and 6 pl of propidium iodide
for discrimination of living, apoptotic and necrotic cells
(Bender Med Systems, Vienna, Austria). After incubation
for 20 min at 4°C in darkness, the cells were centrifuged
and resuspended in 100 pl binding buffer. Flow cytometry
was carried out on a FACS-calibur (Becton-Dickinson,
Heidelberg, Germany). The software Cellquest-pro V1.1
from Becton-Dickinson was used for data analysis.

Statistical analysis

All experiments were performed in duplicates for each
of the five patients. Furthermore, cells of each donor
were divided into two groups: treated and nontreated.
Data are presented as mean * standard deviation. Differ-
ences between the treated and nontreated patellar tendon
fibroblasts were analyzed using Student’s t-test. A P value
of less than 0.05 was considered statistically significant.

Results

Characterization of the patellar tendon fibroblasts
Patellar tendon fibroblasts were used for cell culture.
Characterization of the cells was carried out as described
before [32].

Time to closure

A uniform 1.5-cm-wide scrape wound was observed in
every well of the six-well tissue culture plates. The edges of
the wounds were sharply delineated. Damaged cells were
observed in the edges that still adhered to the bottom of
the well. On the consecutive days, the wound area was oc-
cupied by fibroblasts. The mean time for bridging the gap
in the nontreated cells was 5.05+ 0.33 days (Figure 2B).
Treatment with the specific ‘wound healing’ program emit-
ted by Somagen™ device significantly accelerated the bridg-
ing time to 3.35 + 0.38 days (P <0.001).

Apoptosis rate

The percentage of Annexin-V positive cells did not differ
between the two groups (nontreated 38.5 + 6.5% versus
Somagen™ device-treated 38.7 £7.7%) as depicted in
Figure 3A.

Proliferation

Proliferation was determined by BrdU incorporation.
The obtained values are optical density values corrected
for unspecific backgrounds (Figure 3B). Untreated cell
cultures with scrape wounds showed a mean value of
0.70 £ 0.16. A significant increase was observed after ap-
plication of the specific ‘wound healing’ program emit-
ted by Somagen™ device (1.58 + 0.24, P <0.001).
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Figure 3 The low-frequency pulsed electromagnetic fields
(PEMF) did not affect the apoptotic rate but significantly
increased the proliferation. Apoptosis level in patellar tendon
fibroblasts in the scrape wound after 1 week (B). Apoptosis was
measured using Annexin V-FITC and Pl staining by flow cytometry.
Proliferation measured using BrdU incorporation into patellar tendon
fibroblasts in the scrape wound after 1 week (A). One part of the
cells was treated with the low-frequency PEMF generated by the
Somagen™ device applying the ‘wound healing’ program. Nontreated
cells served as negative control. Mean + SD, ***P <0.001, N=5,n=2)
are indicated.

Discussion

We investigated that certain low-frequency PEMF se-
quences influence in vitro wound healing of patellar
tendon fibroblasts possibly via increasing the proliferation
rate. In a similar model of scrape wounding of human
foreskin fibroblasts, the 0.8-mm-wide gap was closed
within 36 hours due to a preassembled matrix-containing
fibrinogen. Moreover, this accelerated closure of the gap
was associated with an 8-fold increase in 3H-thymidine
incorporation, indicating a high proliferation rate [10].
Rodemann et al., who treated skin fibroblasts with electro-
magnetic fields, could detect a significant increase of the
collagen synthesis and the protein content [33]. The
proliferation capacity of the cells probably plays a role in
the secondary wound healing phase. As noted in similar
models using intestinal epithelial cells or endothelial cells,
the rate of cell proliferation, determined by BrdU
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incorporation, did not differ between migrating and sta-
tionary cells over the initial 24-h period [34-36]. This indi-
cates that early epithelial and endothelial restitution is
independent of proliferation. After the migration phase
that allows cells to go beyond the wound edges, cells have
to proliferate in order to repopulate the wound area.

These processes are modulated by signal transduction
pathways. The second messenger Ca®* seems to be in-
volved, as brief treatment with increased extracellular
Ca** during scrape wounding accelerated wound area
closure rates by 50% [37,38]. In our study, the tendon fi-
broblasts display 30% better wound area closure rates by
low-frequency PEMF treatment. The differences may be
due to the different cell origin, namely skin fibroblasts in
the literature and tendon fibroblasts in our study. Fur-
thermore, the multi-functional signal transducer NF-«kB
was activated as soon as 30 minutes after scrape wound-
ing [35]. Especially at the wound edges, the subunit p65
was found. Within 5 minutes after wounding, ERK acti-
vation was evident. Again, this activation was particu-
larly prominent in cells residing at the scrape edge [9].
These signal transduction molecules are important dur-
ing adaptation and healing processes of tendon fibro-
blasts. This has been observed using cyclic, longitudinal
strain in patellar tendon fibroblasts. Fifteen minutes of
strain elicit NF-kB binding to DNA and is associated
with increased proliferation [39,40]. c-fos and JNK are
also activated [41]. Therefore, low-frequency PEMF may
activate these signal transduction pathways.

These signal transduction pathways are not only in-
volved in proliferation but also in apoptosis. In our
model, 30 to 40% apoptosis of patellar tendon fibroblasts
was observed. This is in concert with earlier observa-
tions using the same type of cells [41]. Treatment with
the specific ‘wound healing’ low-frequency PEMF pro-
gram did not result in any changes in apoptosis rates. Epi-
thelial cells showed induction of apoptosis originating at
the wound edges, but this apoptotic effect subsequently
spread over a 24-hour period to encompass areas not ori-
ginally damaged [42].

Our study included only five replicates; therefore,
more studies are necessary to further investigate the posi-
tive effect of low-frequency PEMF in a larger cohort of
samples. Additionally, in vivo studies should confirm these
results in a whole organism with tendon pathology.

Nevertheless, the treatment with low-frequency PEMF
enhances the wound healing potential of patellar tendon
fibroblasts in vitro. The incidence of tendon and liga-
ment injuries grows due to the increasingly sports-
oriented society. Treatment of such injuries is still a
challenge to orthopedic trauma surgeons as a restitutio
ad integrim can hardly be achieved. Therefore, new
modes of treatment are investigated to improve the out-
come of such pathologies. Low-frequency PEMF seems to
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have no adverse effects when applied in the human situ-
ation [31]. Furthermore, it is non-invasive, easy to handle,
and has a short application time.

Conclusions

These results may be extrapolated to wound-healing phe-
nomena in other soft tissues, for example skin and muscle.
Wound healing is a complex process involving many dif-
ferent cell types and coordinated signalling responses, but
fibroblasts, as a part of this complexity, support the heal-
ing process and in our study show an improved wound
area closure rate under the influence of low-frequency
PEMF. Thus, low-frequency electromagnetic signals could
be an interesting new treatment option for wound-healing
processes in vivo by accelerating closure of the wounds.
Based on the positive results, further in vivo studies using
low-frequency PEMF generated by the Somagen™ device
for modulating wound healing are planned.
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